Research chemists examine different chemicals to find out how they react with other chemicals and with living cells. When a mixture of chemicals is thought to have potential in the treatment of certain conditions, various combinations of the chemicals will be tested to see whether they might be dangerous to living things. Tests on individual cells and on animals are made before human beings are given the new drug. Many people think that drug-testing on animals is wrong, but others feel that this is the best way to make sure that drugs are safe. Trials of the drug, in which some patients are given a placebo (a drug with no active ingredients), carried out to assess the drug’s effectiveness. It is usually only after many years of testing and monitoring that the drug is released for use by doctors.

The journey will have begun in a university laboratory where researchers, with grants from the research bodies or the pharmaceutical industry, have undertaken basic research to understand the processes behind a disease, often at a cellular or molecular level. It is through better understanding of disease processes and pathways that targets for new treatments are identified. This might be a gene or protein instrumental to the disease process that a new treatment could interfere with, for example, by blocking an essential receptor.

Once a potential target has been identified, researchers will then search for a molecule or compound that acts on this target. Historically, researchers have looked to natural compounds from plants, fungi or marine animals to provide the basis for these candidate drugs but, increasingly, scientists are using knowledge gained from the study of genetics and proteins to create new molecules using computers. As many as 10,000 compounds may be considered and whittled down to just 10 to 20 that could theoretically interfere with the disease process.

The next stage is to confirm that these molecules have an effect and that they are safe. Before any molecules are given to humans, safety and efficacy tests are conducted using computerised models, cells and animals. Around half of candidates make it through this pre-clinical testing stage and these five to 10 remaining compounds are now ready to be tested in humans for the first time. In the UK, approval by the Medicines and Healthcare products Regulatory Agency (MHRA) is required before any testing in humans can occur. The company will put in a clinical trial application (CTA), which will be reviewed by medical and scientific experts, who will decide whether or not sufficient preliminary research has been conducted to allow testing in humans to go ahead.

Each year sees a couple of dozen new drugs licensed for use, but in their wake there will be tens of thousands of candidate drugs that fell by the wayside. The research and development journey of those new drugs that make it to market will have taken around 12 years and cost around £1.15bn.