The earth’s north and South Poles attract charged particles from the Sun. Within the atmosphere, these collide with molecules of gas to cause spectacular light shows, called the aurora borealis (northern dawn), which can be seen in the Arctic Circle. When the weather conditions are right, the aurora borealis, also known as the northern lights, can sometimes be seen outside the Arctic Circle in the northern hemisphere.
Our sun is 93 million miles away. But its effects extend far beyond its visible surface. Great storms on the sun send gusts of charged solar particles hurtling across space. If Earth is in the path of the particle stream, our planet’s magnetic field and atmosphere react. When the charged particles from the sun strike atoms and molecules in Earth’s atmosphere, they excite those atoms, causing them to light up.
What does it mean for an atom to be excited? Atoms consist of a central nucleus and a surrounding cloud of electrons encircling the nucleus in an orbit. When charged particles from the sun strike atoms in Earth’s atmosphere, electrons move to higher-energy orbits, further away from the nucleus. Then when an electron moves back to a lower-energy orbit, it releases a particle of light or photon.
What happens in an aurora is similar to what happens in the neon lights we see on many business signs. Electricity is used to excite the atoms in the neon gas within the glass tubes of a neon sign. That’s why these signs give off their brilliant colors. The aurora works on the same principle – but at a far more vast scale.
The aurora often appears as curtains of lights, but they can also be arcs or spirals, often following lines of force in Earth’s magnetic field. Most are green in color but sometimes you’ll see a hint of pink, and strong displays might also have red, violet and white colors. The lights typically are seen in the far north – the nations bordering the Arctic Ocean – Canada and Alaska, Scandinavian countries, Iceland, Greenland and Russia. But strong displays of the lights can extend down into more southerly latitudes in the United States. And of course, the lights have a counterpart at Earth’s south Polar Regions.
The colors in the aurora were also a source of mystery throughout human history. But science says that different gases in Earth’s atmosphere give off different colors when they are excited. Oxygen gives off the green color of the aurora, for example. Nitrogen causes blue or red colors.
So today the mystery of the aurora is not, so mysterious as it used to be. Yet people still travel thousands of miles to see the brilliant natural light shows in Earth’s atmosphere. And even though we know the scientific reason for the aurora, the dazzling natural light show can still fire our imaginations to visualize fire bridges, gods or dancing ghosts.
The fact that an electromagnet ceases to become a magnet when the current is turned off can be used to great effect in large and small machines. For example, a powerful magnet can lift very heavy weights of iron and steel in a factory, but that would be no good if the magnet could not be persuaded to release them. With an electromagnet, the current can be stopped and the load released.
Magnets come in two main types: permanent magnets and electromagnets. As its name suggests, a permanent magnet is always magnetized -- think of a kitchen magnet that stays stuck to a refrigerator door for years. An electromagnet is different; its magnetism works only when powered by electricity. Although an electromagnet is more complicated than a permanent magnet, it has useful and important advantages.
One of the most important features of an electromagnet is the ability to change its magnetic force. When no electric current flows through the magnet’s wires, it has no magnetic force. Put a little current in the magnet, and it has a small force. A large current gives the magnet a bigger force, able to lift or pull heavier objects. The ability to turn magnetic force on and off has many important uses, ranging from simple household gadgets to giant industrial machines.
The pulling power of a permanent magnet is limited to the type of metal from which it’s made. Currently, the strongest permanent magnets are made of a combination of iron and a metal called neodymium. Although these permanent magnets are strong, the best electromagnets are more than 20 times stronger.
Small electromagnets are used in electronic locks, such as those found on an automobile or the main door of an apartment building. Scrapyard cranes have powerful electromagnets that lift metal car bodies with ease. Magnetic Resonance Imaging machines use very powerful electromagnets to produce highly detailed images of the human body. The strongest electromagnets are those used in scientific research to study the properties of matter.
An electromagnet can save people who live up several flights of stairs from having to walk down to the front door when the bell rings. They can simply find out who is calling by means of an intercom and then press a switch to let the caller in. The switch turns on a current that activates an electromagnet. The magnet attracts the door latch, pulling it back and allowing the visitor to enter. Then a spring allows the latch to slip back into place.
You can find small permanent magnets in toys, handheld gadgets such as electric razors, and clasps for bracelets and watches. Larger permanent magnets are useful in household appliance motors and in stereo speakers. The electric motors in hybrid vehicles use very strong permanent magnets.