WHAT IS AN INTERGLACIAL PERIOD?

          It is thought that Ice Ages occur roughly every 100,000 years. The last one ended around 10,000 years ago, so we may experience another in 90,000 years time. Scientists call the time between Ice Ages an interglacial period.

         An interglacial period (or alternatively interglacialinterglaciation) is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

          During the 2.5 million years of the Pleistocene, numerous glacials, or significant advances of continental ice sheets, in North America and Europe, occurred at intervals of approximately 40,000 to 100,000 years. The long glacial periods were separated by more temperate and shorter interglacials.

          During interglacials, such as the present one, the climate warms and the tundra recedes polewards following the ice sheets. Forests return to areas that once supported tundra vegetation. Interglacials are identified on land or in shallow epicontinental seas by their paleontology. Floral and faunal remains of species pointing to temperate climate and indicating a specific age are used to identify particular interglacials. Commonly used are mammalian and molluscan species, pollen and plant macro-remains (seeds and fruits). However, many other fossil remains may be helpful: insects, ostracods, foraminifera, diatoms, etc. Recently, ice cores and ocean sediment cores provide more quantitative and accurately-dated evidence for temperatures and total ice volumes.

          Interglacials and glacials coincide with cyclic changes in the Earth’s orbit. Three orbital variations contribute to interglacials. The first is a change in the Earth’s orbit around the sun, or eccentricity. The second is a shift in the tilt of the Earth’s axis, or obliquity. The third is the wobbling motion of Earth’s axis, or precession.

          Warm summers in the Southern Hemisphere occur when it is tilted toward the sun and the Earth is nearest the sun in its elliptical orbit. Cool summers occur when the Earth is farthest from the sun during the summer. Such effects are more pronounced when the eccentricity of the orbit is large. When the obliquity is large, seasonal changes are more extreme.

          Interglacials are a useful tool for geological mapping and for anthropologists, as they can be used as a dating method for hominid fossils.

          Brief periods of milder climate that occurred during the last glacial are called interstadials. Most but not all interstadials are shorter than interglacials. Interstadial climate may have been relatively warm but not necessarily. Because the colder periods (stadials) have often been very dry, wetter (not necessarily warmer) periods have been registered in the sedimentary record as interstadials as well.

          The oxygen isotope ratio obtained from seabed sediment core samples, a proxy for the average global temperature, is an important source of information about changes in the climate of the earth.

          An interglacial optimum, or climatic optimum of an interglacial, is the period within an interglacial that experienced the most ‘favourable’ climate and often occurs during the middle of that interglacial. The climatic optimum of an interglacial both follows and is followed by phases within the same interglacial that experienced a less favourable climate (but still a ‘better’ climate than the one during the preceding/succeeding glacials). During an interglacial optimum, sea levels rise to their highest values but not necessarily exactly at the same time as the climatic optimum.

Picture Credit : Google