Beyond the orbit of Neptune, stretching deep into the outer Solar System, lies a belt of celestial bodies – made of rock and ice. The astronomer Gerard Kuiper first suggested the existence of this zone of comet-like objects, and so it was named the Kuiper Belt. There are at least 70,000 minor members in the Kuiper Belt with a diameter of over 100km (62 miles). The largest of these is 1992QBI, otherwise known as Smiley, which is 220km (137 miles) across.

          The Kuiper belt occasionally called the Edge worth–Kuiper belt, is a cicumstellar disc in the outer Solar System, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20 to 200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles (termed “ices”), such as methane, ammoni and water. The Kuiper belt is home to three officially recognized dwarf planets: Pluto, Haumea and Makemake. Some of the Solar System’s moons, such as Neptune’s Triton and Saturn’s Phoebe, may have originated in the region.

          The Kuiper belt was named after Dutch-American astronomer Gerard Kuiper, though he did not predict its existence. In 1992, Albion was discovered, the first Kuiper belt object (KBO) since Pluto and Charon. Since its discovery, the number of known KBOs has increased to thousands, and more than 100,000 KBOs over 100 km (62 mi) in diameter are thought to exist. The Kuiper belt was initially thought to be the main repository for periodic comets, those with orbits lasting less than 200 years. Studies since the mid-1990s have shown that the belt is dynamically stable and that comets’ true place of origin is the scattered disc, a dynamically active zone created by the outward motion of Neptune 4.5 billion years ago; scattered disc objects such as Eris have extremely eccentric orbits that take them as far as 100 AU from the Sun.

          The Kuiper belt is distinct from the thyeoretical Oort cloud, which is a thousand times more distant and is mostly spherical. The objects within the Kuiper belt, together with the members of the scattered disc and any potential Hills cloud or Oort cloud objects are collectively referred to as trans-Neptunian objects (TNOs). Pluto is the largest and most massive member of the Kuiper belt, and the largest and the second-most-massive known TNO, surpassed only by Eris in the scattered disc. Originally considered a planet, Pluto’s status as part of the Kuiper belt caused it to be reclassified as a dwarf planet in 2006. It is compositionally similar to many other objects of the Kuiper belt and its orbital period is characteristic of a class of KBOs, known as “plutons” that share the same resonance with Neptune.

          The Kuiper Belt and Neptune are noted as one of the ways to define the extent of the Solar System, along with the heliopause and the radius at which the Sun’s gravitational influence is matched by other stars, estimated to be between 50000 AU to about 2 light-years.

Picture Credit : Google