HOW DO COMMUNICATION SATELLITES WORK?

The layer of the Earth’s atmosphere called the ionosphere can reflect some radio waves back to Earth. This is used for sending messages over fairly short distances, but for messages to travel further across the Earth, the radio signals can be bounced off a satellite, orbiting almost 36,000km (22,000 miles) above the Earth’s surface. Several satellites, in different orbits, are required to give coverage over the whole globe, and different satellites are used to reflect signals for different media, such as telephone messages and television pictures.

A communications satellite is an artificial satellite that relays and amplifies radio telecommunications signals through a transponder. It basically creates a communication channel between a source transmitter and a receiver at different locations on earth. Communications satellites are used for television, telephone, radio, internet, and military applications. There are currently 2,134 communications satellites in the earth’s orbit and these comprise both private and government organizations. Several are in geostationary orbit 22,236 miles (35,785 km) above the equator, so that the satellite appears stationary at the same point in the sky. The orbital period of these satellites is the same as the rotation rate of the Earth, which in turn allows the satellite dish antennas of ground stations to be aimed permanently at that spot; they do not have to move along and track it. Since the high frequency radio waves used for telecommunications links travel by line of sight, they get obstructed by the curve of the earth. What these communications satellites do is they relay the signal around the curve of the earth thus making possible communication between widely removed geographical points. Communications satellites use a wide range of radio and microwave frequencies. To avoid signal interference, international organizations have regulations stating which frequency ranges (or bands) certain organizations are permitted to use. This allocation of bands reduces the chances of signal interference.

A group of satellites working together is called a satellite constellation. Two such constellations are supposed to offer satellite phone services (mainly to remote areas), are the Iridium and Global star systems. The Iridium system has 66 satellites. It is also possible today to provide discontinuous coverage using a low-earth-orbit satellite that can store data received while passing over one part of earth and transmitting it later while passing over another part. The CASCADE system being used by Canada’s CASSIOPE communications satellite is an apt example.

A satellite in orbit has to operate continuously over its entire life span. It needs internal power to be able to operate its electronic systems and communications payload. The main source of power is sunlight, which is harnessed by the satellite’s solar panels. A satellite also has batteries on board to provide power when the Sun is blocked by Earth. The batteries are recharged by the excess current generated by the solar panels when there is sunlight.

Picture Credit : Google