In 1774, the English chemist Joseph Priestley announced that he had discovered ar element within the air. Previously it had been thought that air itself was an element. However, Priestley’s achievement is an example of something that happens quite frequently in science. Although Priestley undoubtedly did discover the presence of oxygen, he was not the first to do so. A Swedish chemist called Carl Scheele had discovered it some months before, and it was not until some months later that a French chemist, Antoine Lavoisier, used Priestley’s work to explain what oxygen is and its importance in respiration and combustion. He also gave oxygen its name. The sharing of scientific knowledge moves our understanding of the world forward. No one person can put together all the pieces of the jigsaw puzzle.

Priestley entered the service of the Earl of Shelburne in 1773 and it was while he was in this service that he discovered oxygen. In a classic series of experiments he used his 12inch “burning lens” to heat up mercuric oxide and observed that a most remarkable gas was emitted. In his paper published in the Philosophical Transactions of the Royal Society in 1775 he refers to the gas as follows: “this air is of exalted nature…A candle burned in this air with an amazing strength of flame; and a bit of red hot wood crackled and burned with a prodigious rapidity, exhibiting an appearance something like that of iron glowing with a white heat, and throwing sparks in all directions. But to complete the proof of the superior quality of this air, I introduced a mouse into it; and in a quantity in which, had it been common air, it would have died in about a quarter of an hour; it lived at two different times, a whole hour, and was taken out quite vigorous.”

Although oxygen was his most important discovery, Priestley also described the isolation and identification of other gases such as ammonia, sulphur dioxide, nitrous oxide and nitrogen dioxide.

The Leeds Library holds important archival material on Priestley’s time there. It was while he was in Leeds that he began his most important scientific researches namely those connected with the nature and properties of gases. A bizarre consequence of this is that Priestley can claim to be the father of the soft drinks industry. He found a technique for dissolving carbon dioxide in water to produce a pleasant “fizzy” taste. Over a hundred years later Mr Bowler of Bath benefited from this when he formed his soft drinks industry.

Priestley should be included in any pantheon of scientists. The bicentenary of his death is an opportune time to reassess his life and work and several events are planned during the year. He possessed enormous scientific skills and originality of thought as well as having the courage to promote unpopular views. He was a man of rare insight and talent.

Picture Credit : Google