WHAT IS THE PAYLOAD BAY?

The payload bay is where the Shuttle’s cargo is kept during flight. It measures 18.3m by 4.6m (60ft by 15ft), which is large enough to hold two small buses end to end. The two large bay doors can be opened when the Shuttle reaches low-Earth orbit, allowing the cargo to he lifted into space.

Payload is the carrying capacity of an aircraft or launch vehicle, usually measured in terms of weight. Depending on the nature of the flight or mission, the payload of a vehicle may include cargo, passengers, flight crew, munitions, scientific instruments or experiments, or other equipment. Extra fuel, when optionally carried, is also considered part of the payload. In a commercial context (i.e., an airline or airfreight carrier), payload may refer only to revenue-generating cargo or paying passengers.

For a rocket, the payload can be a satellite, space probe, or spacecraft carrying humans, animals, or cargo. For a ballistic missile, the payload is one or more warheads and related systems; their total weight is referred to as the throw-weight.

The fraction of payload to the total liftoff weight of the air or spacecraft is known as the “payload fraction”. When the weight of the payload and fuel are considered together, it is known as the “useful load fraction”. In spacecraft, “mass fraction” is normally used, which is the ratio of payload to everything else, including the rocket structure.

There is a natural trade-off between the payload and the range of an aircraft. A payload range diagram (also known as the “elbow chart”) illustrates the trade-off. The top horizontal line represents the maximum payload. It is limited structurally by maximum zero-fuel weight (MZFW) of the aircraft. Maximum payload is the difference between maximum zero-fuel weight and operational empty weight (OEW). Moving left-to-right along the line shows the constant maximum payload as the range increases. More fuel needs to be added for more range.

The vertical line represents the range at which the combined weight of the aircraft, maximum payload and needed fuel reaches the maximum take-off weight (MTOW) of the aircraft. If the range is increased beyond that point, payload has to be sacrificed for fuel.

The maximum take-off weight is limited by a combination of the maximum net power of the engines and the lift/drag ratio of the wings. The diagonal line after the range-at-maximum-payload point shows how reducing the payload allows increasing the fuel (and range) when taking off with the maximum take-off weight.

The second kink in the curve represents the point at which the maximum fuel capacity is reached. Flying further than that point means that the payload has to be reduced further, for an even lesser increase in range. The absolute range is thus the range at which an aircraft can fly with maximum possible fuel without carrying any payload.

Picture Credit : Google