CFCs (chlorofluorocarbons) are another example of greenhouse gases. They are found in aerosol sprays, refrigeration and air-conditioning systems, and certain types of foam packaging. Awareness of the damage caused by CFCs has meant that some products are labelled as “CFC Free”.

Chlorofluorocarbon (CFC) is an organic compound that contains carbon, chlorine, and fluorine, produced as a volatile derivative of methane and ethane. A common subclass is the hydrochlorofluorocarbons (HCFCs), which contain hydrogen, as well. Freon is DuPont’s brand name for CFCs, HCFCs and related compounds. Other commercial names from around the world are Algofrene, Arcton, Asahiflon, Daiflon, Eskimo, FCC, Flon, Flugene, Forane, Fridohna, Frigen, Frigedohn, Genetron, Isceon, Isotron, Kaiser, Kaltron, Khladon, Ledon, Racon, and Ucon. The most common representative is dichlorodifluoromethane (R-12 or Freon-12).

Chlorofluorocarbons (CFCs) are a family of chemical compounds developed back in the 1930’s as safe, non-toxic, non-flammable alternative to dangerous substances like ammonia for purposes of refrigeration and spray can propellants. Their usage grew enormously over the years. One of the elements that make up CFCs is chlorine. Very little chlorine exists naturally in the atmosphere. But it turns out that CFCs are an excellent way of introducing chlorine into the ozone layer. The ultraviolet radiation at this altitude breaks down CFCs, freeing the chlorine. Under the proper conditions, this chlorine has the potential to destroy large amounts of ozone. This has indeed been observed, especially over Antarctica. As a consequence, levels of genetically harmful ultraviolet radiation have increased.

Work on alternatives for chlorofluorocarbons in refrigerants began in the late 1970s after the first warnings of damage to stratospheric ozone were published. The hydrochlorofluorocarbons (HCFCs) are less stable in the lower atmosphere, enabling them to break down before reaching the ozone layer. Nevertheless, a significant fraction of the HCFCs do break down in the stratosphere and they have contributed to more chlorine buildup there than originally predicted. Later alternatives lacking the chlorine, the hydrofluorocarbons (HFCs) have an even shorter lifetimes in the lower atmosphere. One of these compounds, HFC-134a, is now used in place of CFC-12 in automobile air conditioners. Hydrocarbon refrigerants (a propane/isobutane blend) are also used extensively in mobile air conditioning systems in Australia, the USA and many other countries, as they have excellent thermodynamic properties and perform particularly well in high ambient temperatures. One of the natural refrigerants (along with Ammonia and Carbon Dioxide), hydrocarbons have negligible environmental impacts and are also used worldwide in domestic and commercial refrigeration applications, and are becoming available in new split system air conditioners

Picture Credit : Google